Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fifth Semester B.E. Degree Examination, Aug./Sept.2020 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Define following terms:
 - (ii) Alphabet (iii) Power set (iv) Powers of an alphabet (v) Null string (i) Language (05 Marks)
 - b. Design a DFA for accepting strings of 0's and 1's containing two consecutive 0's in it.
 - (05 Marks)
 - Design a DFA for accepting binary number which are divisible by 5. (05 Marks) Design a DFA for accepting a sequence of a's and b's not ending with abb. (05 Marks)
- Convert the following NFA to DFA. [Refer Fig.Q2(a)]

(07 Marks) (03 Marks)

b. Define \in -NFA and \in -closure. Covert the following ∈-NFA to DFA. [Refer Fig.Q2(c)]

Fig.Q2(c)

(06 Marks)

What are the applications of finite automata and regular expressions?

(04 Marks)

State and prove pumping lemma of regular languages.

(05 Marks)

- Prove that the language $L = \{ww^R : w \in \{a, b\} \mid w^R \text{ is reverse of } w\}$ is not regular.
- Prove that regular languages are closed under intersection.

(05 Marks) (05 Marks)

d. Prove that regular languages are closed under homomorphism.

(05 Marks)

- Define a context free grammar. Design a CFG which accepts all palindromes over (06 Marks) a's and b's.
 - b. Define the following terms:
 - (i) Derivation tree (ii) Yield of a tree
- (iii) Leftmost derivation

(iv) Rightmost derivation

(04 Marks)

c. Design a CFG for accepting arithmetic expressions involving + and * operators. Check if your CFG is an ambiguous grammar or not. If it is an ambiguous grammar, then get an unambiguous grammar for the same. (10 Marks)

PART - B

5 a. Define a PDA and the languages accepted by it.

b. Design a NPDA for the language $L = \{a^nb^{2n} : n \ge 0\}$ c. Design an NPDA for the language $L = \{a^nb^kc^m : k = n + m, n \ge 0, m \ge 0\}$ d. Convert the following CFG to PDA. $S \rightarrow aB \mid bA \qquad A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$ (05 Marks)
(05 Marks)

- 6 a. When a production becomes useless / nullable? What problem is faced when unit productions present in the grammar? Simplify the following CFG to CNF.
 - $S \rightarrow aSb \mid bSa \mid \in \mid SS$ b. Define pumping lemma of CFGs. Show that $a^n b^n c^n$ is not a CFL using the same. (05 Marks)
 - c. Prove that context free languages are not closed under intersection and complementation operations. (05 Marks)
- 7 a. Define a Turing Machine. Design a TM for copying string of n 1's present in a tape to its right side. At the end of execution the number of 1's should be 2n in the tape. (10 Marks)
 - b. Design a TM to accept any palindrome of a's and b's. (08 Marks)
 - c. Design a TM that complements a given binary input. (02 Marks)
- 8 a. Define the diagonalization language. Show that for the language Ld, there is no turing machine exists. (10 Marks)
 - b. Define recursive languages. With a diagram explain the relationship of recursive, RE and non RE languages. (06 Marks)
 - c. What is post correspondence problem? Show that it is undecidable. (04 Marks)